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Abstract

Coupled free vibration analysis has been performed on a cantilever thin elastic plate carrying a liquid drop attached on
its arbitrary point in a zero-gravity environment. A liquid drop, having slipping edge boundary condition on the plate, has
been treated as an inviscid ideal liquid with hemi-spherical shape. By using Rayleigh—Ritz method, coupled hydroelastic
problem has been rendered into an eigenvalue problem, from which one can obtain coupled natural frequencies and modes
of vibration. Since we have treated an attached drop as an ideal liquid drop not as added rigid mass or ‘mass—spring’
system, the problem consists of coupled system between a plate and a liquid drop, which have both multi-degrees of
freedom. In the numerical calculations, present results have been compared with the results in which a liquid drop have
treated as a ‘mass—spring’ system which has previously been presented by the authors.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Utilizing a low-gravity environment in space, a series of experiments, e.g. International Microgravity
Laboratory (IML), United State Microgravity Laboratory (USML), First Microgravity Science Laboratory
(MSL-1), etc., had been conducted in various fields of science such as material science, fundamental physics,
life science, bioastronautics and so on. In material science, for example, new or high-quality materials, which
cannot be produced on the ground, have been developed in space [1]. In such condition, heated liquefied
material with free surface deforms to a spherical shape, minimizing its surface energy, and perfect spherical
material with isotropic property can be obtained [2,3]. However, there are some problems which cannot be
predicted on earth, i.e. Marangoni convection (vibration) [4], g-gitter [5], etc., which causes imperfection in
shape or anisotropy of materials. Therefore, it may be a technical importance to clarify the vibrational
behavior of a liquid drop itself or coupled dynamic behavior of a liquid drop with elastic supporting devices in
low-gravity condition.
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Nomenclature Z(0,,t) (§) displacement of liquid—free surface
o plate thickness ratio (= h/L)
a radius of liquid drop o characteristic values for clamped-free
D flexural rigidity of plate (= Eh®/ beam function
12(1 —v?)) B drop radius ratio (= h/a)
E Young’s modulus of plate B; characteristic values for free—free beam
h thickness of plate function
H width of plate 19 surface tension parameter (= o/’ / D)
L _  length of plate A parameter (= «2f>/10 = DHK? /od>L?)
L, L, L, L Lagrangian v Poisson’s ratio of plate
m circumferential wavenumber A aspect ratio (= L/H)
Pli(cos 0) associated Legendre function Ao zero of dP}(cos 0)/d0 =0 at 0 = x/2
r(p), 0, ¢ spherical coordinate system 04 density of liquid
(non-dimensional form) Pp density of plate
R position vector 0 density ratio (= p, / 04)
T kinetic energy o surface tension
t (r) time &(r, 0, @, 1) velocity potential of liquid
U potential energy Q rotational angular velocity vector
14 volume of liquid drop Q(w) natural circular frequency (u) =Q/Q,
W(x,y,t) (w) displacement of plate _ 4
Xi(&) clamped—free beam function = Q/y/D/p,hL)
Y;(n) free—free bgam funct.ion Q, —.Ip / o hL*
x(&),y(n),z Cartesian coordinate system fixed at I r
corner point of plate Q parameter (= 912; / sz = Dp,a’ / O'PphL4
(X0, ¥0)(E0s 1p) location of attached liquid drop = a*/pp>d)

Taking up a coupled dynamic system in which liquid drop is added on a thin elastic structure from those
above problems, we have simply modeled such system as a hemi-spherical liquid drop is added on a cantilever
thin plate. And as a preliminary analysis, we have reduced added liquid drop to a simple ‘spring—mass’ system,
i.e. to one-degree of freedom system [6], and clarified coupled natural frequencies and vibration modes by
using Rayleigh— Ritz method, in which influence of an attached ‘spring-mass’ system, i.e. attached position,
relative values of mass and spring constant, have been studied. Optimal position of an attached ‘spring—mass’
system to minimize coupled plate natural frequency has also been investigated.

As the next step, in the present paper, we shall treat added liquid drop as a frictionless ideal liquid drop of
hemi-spherical shape, and clarify dynamic coupling characteristics with elastic plate by Rayleigh— Ritz method
as has been used in Ref. [6]. When we look over the previous studies on liquid motions in a gravitational field,
which have been treated from the energy method, in 1958, Miles proposed energy method for sloshing
problem in a flexible tank [7]. In 1967, Luke applied variational principle to water wave problem [8] and
Whitham analyzed nonlinear dispersion problem of water wave by using energy method [9]. Komatsu used
Hamilton’s principle to solved nonlinear sloshing problem of a liquid in an arbitrary shape tank [10]. As for a
liquid drop problem, Natarajan and Brown [11,12] analyzed quadratic and third-order resonances of a liquid
drop or bubble using modified Lagrangian which had been used by Luke [8] for free surface wave problem by
replacing the gravitational energy with surface energy. Azuma and Yoshihara analyzed large-amplitude drop
oscillations by using Lagrangian, which had been used in Refs. [11,12] and conducted experiment for mercury
drops in drop tower [13].

While as for studies on vibrations of elastic plate with added sub-dynamical system, Das and Navaratna
extended Young’s study [14] which has been applied to a beam vibration with mass, spring and dashpot,
to a simply supported rectangular plate at which one point is supported by a mass—spring system [15].
Snowdon studied forced vibration of a simply supported rectangular plate with an added mass or with a
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mass—spring—dashpot system, and obtained force transmissibility and driving-point impedance of a plate [16].
Nicholson and Bergman extended their study [17] to a plate system [18]. Trentin and Guyader used modal
sampling method to study response of a plate at medium frequency range in which a large number of modes
exist [19]. Similar problem for a plate with mass—spring system was analyzed by Dowell and Tang by using
asymptotic modal analysis [20]. Cha and Wong presented a method to analyze combined dynamical system
and compared the results with those by Lagrange multiplier method, and Green function method [21]. In the
optimization problem to maximize the fundamental natural frequency by adding support springs, Won and
Park treated cantilever beam and plate [22]. Wu treated rectangular plate carrying multiple three-degree of
freedom spring—mass system using equivalent mass method [23].

2. Free vibrations of a hemi-spherical drop on a rigid plane

First of all, we shall analyze free vibrations of a hemi-spherical drop alone on a rigid plane by using
Rayleigh—Ritz method, as a preliminary examination of the application of the energy method to a plate-drop
coupled dynamical system.

2.1. Analytical model

We shall consider small amplitude-free vibrations of a hemi-spherical drop of radius @ on a rigid plane in a
zero-gravity environment, as shown in Fig. 1. Spherical coordinate (r, 0, ) with its origin o at the center of the
drop base is used. Neglecting dynamics at the interface between liquid drop and base plane, e.g. contact angle,
we here just take the kinematic condition between drop and base plane into account. Then there may be two
types of contact conditions between drop and base, the one is slipping end condition (Fig. 1(a)) in which drop
can move freely on the base, while the other is anchored end condition (Fig. 1(b)) in which drop sticks on the
base along its circular boundary. In the present analysis, we shall employ the slipping condition: Fig. 1(a).

2.2. Basic equation

We assume that the liquid is incompressible, inviscid and behaves irrotational motion from which there
exists velocity potential of the liquid @(r, 0, @, f), which satisfies Laplace equation

o (,00 1 0 oo 1 o0
AP =— (P — | +—— = (sin0— ) +—— = =0.
? ar(r 6r>+sin060<5m060>+sin20@<P2 ’ W

Kinetic energy T is given by

o, [ [R2 fC0D
T= Td/ / / (VO(r,0,0,1) - VO(r,0, ¢, )} sin 0drdde, 2)
o Jo 0

(a) Slipping edge (b) Anchored edge

Fig. 1. Two types of contact conditions between semi-spherical drop and base.
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where f(0, ¢, t) represents distances from origin to a free liquid surface:

J0,0,0)=a+Z(0,¢,1), )
and Z(0, ¢, 1) is free surface displacement, p, is density of liquid. From the small amplitude assumption of the
drop, one can obtain f(0, ¢, 1) = a+ Z(0, ¢, t) = a, and applying Green’s theorem to Eq. (2),

2 r2n pm/2 AD(r. 0
Tzﬁﬁi/"t/ {Mnawjy_ﬁ;:&ﬁ} sin 0d0d g, 4
2 0 0 or r=a

While potential energy U due to the liquid surface tension ¢ is given by [11]

2n pm)2 2 20, 0.1 1/2
U=a/ / fz(e,w,z){1+fg(0’(””)+ AR )} in §48do
0 0

120, ,1)  sin’0 £20,,1)

2 pm/2
-0 / / a’sin 0d0de. (5)
0 0

ﬁWMJM_l [0, 0.1)
720, ¢,t)  sin®0 140, ¢, 1)

Since

may be small, putting

0.0.0 1 [30.9.0)
20,0,0  sin’0 f2(0,0,1)
and using Taylor expansions of {1 + F(, ¢, t)}l/z, we obtain

x/1+F(0,(p,t)%1+w. (6)

FO,0,1) =

Then Eq. (5) renders as

2n  pm/2
- 0/ / [2aZ(0 0,0 + 220, 0, 1) + = {Z 0, o, 2009, I)H sin 0d 0de. (7)

Here from the assumption of the incompressibility of the drop, we obtain

2n pm/2
%/ / {a+ 20,0, sin 0d0d o — V =0, (8)
0o Jo
where V(= 2na’ / 3) is volume of the drop. Using Eqgs. (7) and (8), we have
2n pm/2 1
= a/ / { 720, 0,0 + - {25(9 (p,t)+ 22(9 ?, z)H sin 0d 0 de. ©)
Finally, we obtain Lagrangian L of the system,
L=T-U
2n pm/2
p @ / {45(;’ 0, (p,z)W} sin 0d6de
2n pm/2 e
—0/ / [ 720, 0,0+ ~ {Zf,(o (p,l)+ Z2(0 <p,z)H sin 0d 0d o. (10)

Here, in order to represent free surface displacement of the drop Z(0, ¢, ) by means of the velocity potential
d(r,0, @, t), we use kinematic condition at the free surface.
0Z(0,p,1)  0D(r,0,0,1)
ot o or

at r = a in the range 0 <0 <7 /2, (11)
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assuming Z(0, ¢, t) and &(r, 0, @, t) in the forms as
Z(0, ¢, 1) = {(0, @) cos Q1

O(r,0,p,t) = — Q¢(r, 0, p)sin Qt (12)
and substituting into Eq. (11), we obtain the relation between {(0, ¢) and ¢(a, 0, @) as
0¢(a,0,
(0, ) = PE1D. (13)

Introducing Eq. (13) into Eq. (10), and integrating with 7 for one period of vibration, we obtain Lagrangian
=(Q/n)L,

2 2 pm/2
E:pazg/ / {d)( 0, )6¢(rr9(p)} sin 6d0de

2” 0¢(r, 0, ¢) (1,0, ¢) L (200, -
_g/ / [ { } +2{{ e } +Sin20{ Sao } sin0d0d. (19

2.3. Method of solution

The velocity potential ¢(r, 0, @) is assumed to be of the form

o(r, 0, p) = Z Z An (r))m” P} (cos 0)cos mo, (15)

m=0 n=0
where P’ﬂm(cos 0) is the associated Legendre function of the first kind, and 4,,, are the roots of

dP’' (cos 0)

mn

il =0. (16)

0=n/2

Substituting Eq. (15) into Eq. (14),

(ool ]

- pdaQ n /2
L= Z S A Aumsions / P! (cos 0)P' (cos 0)sin 0d 0

m=0 n=1 s=1

[ SN AwnAushomdams / P! (cos 0)P' (cos 0)sin 0d 0
A ,

m=0 n=1 s=1

o o Y20 d
+= ZZ > Ay Asmnons / {(a 5P, (cos 0)> <a 5%, (cos 0)>

m 0 n=1 s=1

m?

P, (cos O)P (cos 0)} sin HdH}, (17
sSin )

and using following formulas of the associated Legendre function,

1 oy + 17)!
2}vmn + 1 (;”mn - m)'

/2 ( (QP} (cos 0)\ (OP} (cos 0) m? pr o R
/O {( o0 > ( 00 ) “FS. 26 (COS ) (COS )} Sin

in
_ ;“mn(imn + 1) ()‘77171 + m)!

n/2
/ P} (cos 0)P (cos 0)d0 = (18)
o :

2j~mn +1 . (lnm - m)' 57!5" (19)
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We obtain

B hnn Jonn (Ao + m)!
L= )mm -1 mn 2 ' ) 2
szg mn{ Pyl Y + )} T Rl rp—— (20)

where L = 2L/p an.
Then applying Rayleigh— Ritz method to the above equation,

oL
= 21
aAmn 07 ( )
ai > ad O-/Lmn "mn (/lmn + m)'

— A? Jomn — Dpn + 2 = 22
Ay 0Apn L;,; ’"{ paa PR W + )} 2 + 1 G +m)! 0 22

from which one can obtain

O-)Lmn
{Q2 s 3 (imn 1)(;%1}1 + 2)}Amn = 07 (23)
which renders,
@ = JnConn = D + 2)——. (24)
Pad

This represents natural circular frequency of a hemi-spherical drop. Note that the Eq. (24) also represents
natural frequency of a spherical drop [24]. Here, in the present case when 6 = 90°, 4,,, are even numbers 2n for
m is even, while these are odd numbers 21 — 1 for m is odd as

@ =2m2n— )2 +2)—— for m=2j,
pPaa

— 21— 1)2n —2)2n + 1)% for m=2j+ 1. (25)

S

So far we have obtained natural frequency of a hemi-spherical drop by using energy method, i.e
Rayleigh— Ritz method.

2.4. Numerical results

Natural circular frequencies of a semi-spherical drop Q/+/a/p,a® calculated by Eq. (25) are presented in
Table 1, and corresponding vibration modes are shown in Fig. 2 for up to the 4th mode with m =0, 1, 2.
m = 0 mode is an axisymmetric mode, while those with m#0 are asymmetric modes. The first asymmetric
vibration mode with m = 1 which has one nodal line along a meridian direction ¢, has zero frequencies
because of the slipping end conditions of the drop on the base here employed.

Table 1
Natural circular frequencies of a semi-spherical drop Q/+\/a/p,a’

m First Second Third Fourth

0 2.8284271 8.4852814 15.491933 23.664319
1 0 5.4772256 11.832160 19.442222
2 2.8284271 8.4852814 15.491933 23.664319
3 5.4772256 11.832160 19.442222 28.142495
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3. Free vibrations of a plate-drop coupled system
3.1. Basic equation

Next, we shall consider coupled free vibrations of a thin cantilever plate attached by a liquid drop in a
zero-gravity environment. Cartesian coordinate system x—y—z is taken as shown in Fig. 3. The plate
is thin and isotropic, with width H, length L, and thickness 4. While the liquid drop attached at (x,y,)
on the plate, is incompressible, inviscid liquid and behaves irrotational motion. The static shape of the
drop is assumed to be hemi-sphere with radius r = a, which is smaller than length L, and width H of the
plate. The boundary condition of the drop on the plate is the slipping edge condition as described
in the previous chapter (see Fig. 1(a)). Here, we shall use (o, x,y,z) coordinate system for the plate, while
for the drop we shall use (o,r,0, @) coordinate system whose origin is fixed at point (x,y,) on the plate.
Displacements of the plate and the free surface of the drop are represented as W(x,y, ) and Z(0,¢,1),
respectively.

The velocity of the drop can be represented by the velocity potential &(r, 6, ¢, t) which satisfies the Laplace
equation,

2
2000 9,<p,z)> L ! 0 <sin 220 0.9, t)) N 1 090.0.9.0 26)

)
A == 20
(r.0,0.0) =~ ( or sin 0 90 00 sin0  0¢?

Kinetic energy 7 and potential energy U of the system are

hopHoL
T = pL/ / W2 Cx, v, 1) dx dy
2 0 0

p 2n  pm/2  pra .
2 [0 [ [ G0 + @ x R+ V0. 0.0.0}
0 0 0

X { W(xo,yo, H+ QxR+ VD((r,6, e, l)}r2 sin 6drdfde, 27

. Q/H/L PW(x,p,1) 2+ PW(x,y,0\°
- 2 0 0 axz ay2
W (x,y, 1) PW(x, v, 1) W (x,y, 0\
axz ayz + 2(1 — V) (W) dx dy

+2v

2n pm/2 1 1
+ a/ / {—22(0, 0, 1) += {Zﬁ(@, 0,0 +——— Z2(0, 0, I)H sin 0d0de. (28)
o Jo 2 sin“0 ¢

Fig. 3. Cantilever plate attached with semi-spherical drop.
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In the above equations,  x R represents an effect of rotational motion of the drop, p,, is the density and D
is the flexural rigidity of the plate. Then we can obtain Lagrangian L as

L=T-U

hopH oL
_ P / / W (x, v, 1) dx dy
2 0 0

2n pm/2 pa
+%/ / /{W(xo,yo,r)+9><R+V¢(r,0,qo,t)}
o Jo 0
X{W(xo,yo, t) +Q x R+ VO(r,0, 0, l‘)}r2 sin 0drdfde

PW(x,y,1) 3 W(x,y,1) ?
//( ox? )+< 0y )

FW(x,p, 1) W (x,p, 1) EPW(x,y. 0\’
+ 22— ap 20 - v)(W> dxdy

2n pm/2
—0'// |:Zz(9(p,l)+ {Z(9<p,t)+

In the analysis hereafter, we shall assume that the drop behaves just vertical motion with small amplitude on
the plate ignoring the rotational motion, i.e. & x R = 0, which can be realized when a drop is attached on a
loop of vibration mode of the plate. Here introducing the following non-dimensional parameters, the above-
obtained equations are non-dimensionalized with L = 2L / oa’,

129 Z2(0, 0, z)}] sin 0d0de. (29)

f:%, n:%, W= % T=Q,t de\/;,
O!=%, )»=§, &= % Wo—y_lga r:%,
o= 2 FLNY PL S 3 (30)

where 4 is the aspect ratio of the plate, « is non-dimensional thickness of the plate, f is radius ratio, j is density
ratio, o is surface tension parameter. With parameters / and «, plate dimension is defined, and with f drop
dimension is determined. While g and J are the parameters, which characterize material property. These
parameters represent the present coupled vibration system together with attached position of the drop (&, ).

1 1 - 2
]Z:A_/ / <M> dédy
B e, m)) <GZW(5 n,r)> 2 O, n,7) BW(E, 1, 7)
A/ / [( u +2Vﬂ, aéz

on? on?
F2(1 — )2 <W> ] dédy

0&o
/27I /7{/2/ [ (aw(fo, ’7031-)) + 2B aw(é(}a Mo> T) {a(ﬁ(p’ 0, 9097) + l ad_)(p7 07 (paf)
ot op P o0
1 a¢(p9 09 ®, ‘C) 2 o
o sin 0 30 Hp sin 0dpdfde
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_ 2n n/2 ~ 0 7 0
o / / {qs(p, 0,0, r)(b(”’a’(/”f)} sin 0d0 de
0o Jo P p=1

2 pm/2 ~ _ _
[ [_gz(e, 0. %{g;(a,(p,f) +%c§,(e,<p,r)}] sin 00 do. (1)
o Jo sin” 6

_In order to represent free surface displacement of the drop &0, p,7) by means of the velocity potential
¢(p, 0, ¢, 1), we use kinematic condition at the free surface.

(0, .7) _ 3$(p,0,9.7)
ot op
Here, {(0, ¢, 1), ¢(p, 0, @,7) and Ww(&, n,7) are assumed in the forms as

at p=1 intherange 0<0<mn/2. (32)

{0, 9,0 = L0, p)cos o,

é(ps 03 @, ‘C) = - (/U¢(p, 0’ (,0) Sin T,
w(é,n,7) = w(&,n)cos wr, (33)

where w is non-dimensional coupled natural frequency defined as

W= Q= | 34
’ pphL4 (34)

With Egs. (32) and (33), we obtain the relation between {(6, ¢) and ¢(p, 0, @) as

0p(p, 0, 9)

(0.9 =5

(35)

p=1
Substituting Egs. (33) and (35) into Eq. (31), and integrating with ¢, we obtain Lagrangian L for the coupled
dynamic system between plate and drop.

N 1,1
X 29 2
P = o /0 /0 WA(E ) dy
g 6ZW(§,17)>2 4(62W(5,f7)>2
A A
/0/0[( o2 ) T\ Tap

2 2 2 ?
Y 50 )g(; 1) 0°w(&, i1)+2(1 _ V))vz (a w(f,ﬂ)) ‘| dédn

on? acon

_ 2n pm/2
r2o /0 /0 /0 (B W (o, m0) + 2Bw (o, o)

x{ 3 ; 20 sin 0 o p~ sin 0dpdfde

_ 2n pm/2
1+ 0? / / {4)(,0,0, w,r)w} sin 0d6de
p=I

Y

1] [0¢(p,0,p) 1 [3¢(p,0,0)\" ‘
+5{{ 0pd0 }+sin26{ 3pde }HFISln@d@déD- (36)
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3.2. Method of solution

We will apply Rayleigh— Ritz method to Eq. (36). The deflection of the plate w(£,n) and the velocity
potential of the drop ¢(p, 0, ¢) are assumed to be of the forms:

wEm =Y A XY, (37)
i=1 j=1
$0.0.0)= 3> Bup™ P (cos 0)cos mo. (38)
m=0 n=1

where 4;; and B,,, are the unknown coefficients. X;(¢) and Y;(y) are admissible beam functions which satisfy
clamped- free boundary conditions and free— free conditions, respectively, which are defined as follows [25]:

Xi(&) = p(cosh a;& — cos ;&) — vi(sinh o;& —sin &), (0<i<1, i=1,2,3,...) (39)
cosh o; + cos «; sinh o; — sin o;
M= sinh o; - sin oy Vi = sinh o; - sin o (40)

where o; are the roots of
cosh o; - cos o; = —1, (41)
oy = 1.875, oy =4.694, o3 = 7.854,... for clamped- free beam function:
i) =1,
Ya(n) = /320 - 1),

Y;(n) = fi;(cosh B;n + cos B;n) — vi(sinh Bn + sin f;n)
O<n<l, j=3,45. ), (42)

cosh f3; — cos ; sinh ; + sin f8;

5= “sinh B, -sin B, © 7" sinh B, -sin B’ “3)
where f3;(3<) are the roots of
cosh ;- cos f; =1, (44)
py=4.730, p,=7853, p5=10.995,... for free—free beam function.
While P’A':m(cos 0) is the associated Legendre function of the first kind, and 4,,, are the roots of
dP? (cos 0
WSO (45)
do 0=n/2

Substituting Egs. (37) and (38) into Eq. (36),

o0 00 o0 1 1

S0 dpdu [ X@x©d [ VoY d
k= 0 0

j=

0o 00 00 2y . 2 1
> 33> dyau| / Tt [ vorma

1 j=1 k=1 i=1

(1)2

NgE

N

L:

I
=
~

Mg
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1("/)

Lo Ld2Y,(n) > Yi(n) Ld2X,(¢)
w2 [ xoxioae [ SEAD S dn+v/12{ | SEtroa / vionY

2 2
/X(é)d Xk(f)df/ d Y(”)Y(n)dn}+z(1—v) /dX(@dX"@ 5/ dY(”)dZ’n(") n]

=2 2

00 00 00 2n  pm/2
tQo ﬁQZZZ Aj A X (50)Xk(fo)y(’70)yl(ﬂo)/ / / p? sin 0dpdode

i=1 j=1 k=1 I=1

1 dP? (cos 0 . .
+ fp)'”’" 7)"””( ) cos me — 7’” ""“P’f (cos B)sin mo »p?sin 0dp dode
p 9 p sin 0 mn

_ 00 00 0 2 pm/2
+ 0% w? Z Z Z Z BnBys /0 /o {/quP’fm (cos H)Pzw (cos 0) cos me cos qq)} sin 0d0de
2n pm/2 00 00 00 00
—2 /0 /0 — z_% Z Z Z B Byshomnsgs P (cOs 0)Pq (cos 0) cos mgcos g¢
dP” (cos 9)}{deqx(cos 0)

+ %Z Z Z Z anquimniqs{ A"’"da a0 } COS M@ CoS qp

o0 o0 o0 o0
S 3NN BunBunGhadgs Py (cos 0)P (cos 0)sin mesin qq)] sin 0d6de. (46)

In the above equation, we shall use integration formula on the trigonometric functions
sin mo and cos me, and on the associated Legendre function P; (cos 0) as Eq. (18), (19) and

1 for s=0; 0 for s>0: Ao, =2s,

/2
P, (cos 0)sin 0d0 = { Pa(0) (=1)’'Q2s—1D! PR (47)
/0 w42 (st o = 25+ 4,
Mo, = / 2{—61) iar (005 9)} sin 0d0. (48)
0 o0

Finally, we obtain
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oo 00

2
’33 » ZAgAk,X,»(éo)Xk(éo)Yj(no) Y (o)

i=1 j=1 k=1 I=1

+ 27r§-22w2

Jon + 2

n=

(&%
o0 00 o0 MOH
2B Y Y AyBunXi(&0)Y(n) s
i=1 j=1 n=1
2

=2 o0 o
1" w 2o 1 2o (io +1)
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DD v S d DL by ek Ty ¥ £

i=12..., j=12..., k=12...0 [I=12...j n=12,.... (49)

+




M. Chiba et al. | Journal of Sound and Vibration 298 (2006) 257-279 269

It should be noted here that from the orthogonality of the trigonometric functions, only m = g = 0 terms,
i.e. Aoy, have been remained in the integration of summation terms in m and ¢ in Eq. (46), where Ay,
corresponds to )L,,m when m = 0 and are even integers, i.e. 2, 4, 6, .... Integrations for the beam functions X;(&)

and Y;(n), J,k, /, , etc. shown above are presented in Appendlx A
Applymg Rayleigh— Ritz method to the above equation
oL oL
=0, =0, 50
0A;; 0By (50)
ai _ o0 o0
oAy = 24w kg gAklézk(S]I
_ o0 o0
—2A3°3 4w [(a + 2 BN0wS + v TLKE + JRKY) +2(1 — )2} KH
k=1 I=1
ﬁ2 o0 00
2
+4nQ o 7,; ;AHX (€0) X x(€0) Yj(010) Y 1) + ﬁ; Bou X i(&0) Y1(10) "5 l “5=0 6
ai =2 5 C X 1
—— = 4nBQ A X; Y;
35, = ‘%o ;‘; X ()Y n0) 57— M
= A }15}.
+ By {Q2wz — JonCion — Don + 2)} uzﬁ - (52)

Then we can obtain frequency equation in the matrix form as

A-K,-jkg 0
0 n}%n(ﬂd)n - 1)(/L0n + 2)5ns
20n + 1
; 2npr0°
2{Aaika,-/ L2 Xl-@o)Xk(éo)Y;(%)Yz(no)} 4P @ X A(E0) ¥ ()00

3 Aon + 2 A
— —0, (53)

-2 B
Q™A né;ﬂ On
4P X () Y ()20 0

Aon + 2 2200 + 1
where
Koo =2{ (o + 28} ) oty + 022 (FRKP + IR +20 = 02K (54)
or putting
271[32!_22 2 M
z{Aé,kaﬂ + X (&)X (&) Y (o) Yz(’?o)} A Xi(Co) Yol -sz
M = ) > (55)
149] /1(),15,,5
AnpQRX (&)Y, ('70) 7o, + 3 o+ 1)
Z_]K;'jkl 0
K=, 733 Gon — D(Zon + 2)0ns | » (56)

200 + 1
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Eq. (53) yields

K — oM { ;: } =0 (57)

from which one can obtain coupled natural frequencies as eigenvalues, and vibration modes as eigenvectors.
3.3. Numerical results

The present plate—drop coupled dynamical system can be represented by six system parameters: aspect ratio
of the plate 4= L/H, plate thickness ratio o = /L, drop radius ratio = h/a, density ratio p = p,/py,
surface tension parameter d = oh” /D, and attached position of the drop (&, #p)- Numerical calculations have
been carried out varying these system parameters to clarify the influence of attached drop on the coupled
dynamical characteristics of a plate. Poisson’s ratio v was taken as 0.3. In the calculation, unknown terms in
Eq. (53) were taken up to i=j=k=1[=n =38, to obtain reliable values as engineering data. Numerical
calculations have been conducted programming ourselves by FORTRAN except subroutine programs, which
find eigenvalue and eigenvector and are developed as Library program of Computer Center of Tohoku
University, Japan.

3.3.1. Uncoupled vibrations of plate and drop
First of all, we shall see the uncoupled vibration characteristics of a plate alone. Variations of uncoupled
natural frequencies of a cantilever plate w, with aspect ratio/ are shown in Fig. 4. In the numerical calculation,
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Fig. 4. Variation of natural frequency of a cantilever plate w, with aspect ratio 4.
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unknown terms were taken as k = 8, [/ = 8. For convenience, vibration modes when A = 4.0 are presented in
the right-hand side of the figure. In general, natural frequencies that have nodal line in vibration mode
perpendicular to the plate axis (£) are nearly constant with A, while those, which have nodal line parallel to the
plate axis, increase with increase in A. With the variation of /A, exchange of the vibration modes can be
observed. Furthermore, one can recognize the veering and crossing of the frequency curves [26,27]. In order to
distinguish these two, step size for A in the numerical calculation was taken to be small as much as possible.
More details on frequency curve’s veering and crossing in a cantilever plate have been studied in Ref. [25]. The
lowest four vibration modes are presented for three kinds of the aspect ratio A = 0.5, 1 and 2 in Fig. 5.

While uncoupled natural frequency of a drop w, can be obtained by putting 4;; = 0 in Eq. (53), or a non-
dimensional form of Eq. (24),

g = $¢Aon(zon Do 1 2. (58)

where Ao, = 2,4, .... Corresponding vibration modes are axisymmetric with m = 0, as described in Section 3.2.
Variations of the natural frequency w,; with radius ratio  and density ratio g are presented in Figs. 6 and 7,
respectively, for three values of surface tension parameter 8, 1.0 x 1077, 1.0 x 107%, 1.0 x 107> for « = 0.01.
From these figures, we find that natural frequencies drastically increase with increase in the surface tension
parameter o.

3.3.2. Plate-drop coupled system
As already mentioned, since the present coupled dynamical system includes six system parameters, i.e. 4, o,
B, p, 0 and (&g, ), it may be impossible to show all the cases in the combination of theses parameters. Then,

4th

3rd

Ist

A=0.5 1.0 2.0

Fig. 5. Vibration modes of a cantilever plate with aspect ratio A.
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we would like to concentrate here to demonstrate the coupling between one multi-degree of freedom system,
i.e. a cantilever plate, and added another multi-degree of freedom system, i.e. a liquid drop, and to compare
the results with the coupled system between one multi-degree of freedom system, i.e. a cantilever plate, and
single-degree of freedom system, i.e. ‘mass—spring’ system which has been previously studied [6]. Therefore, for
instance, we set here the aspect ratio of the plate 4 = 1.0, position of the liquid drop (&, 7,) = (0.5,0.5).
Coupled natural frequency variations with density ratio g are presented for three values of surface tension
parameter ¢ in Fig. 8, when f = 0.5, & = 0.01. In the figure, although uncoupled natural frequencies of the
drop wg and those of the plate w, are presented in one-dotted curves or broken lines, they are almost under
coupled frequency curves which are presented with thick solid lines or curves. Horizontal lines are coupled
plate natural frequencies, which are independent with g, and parabolic curves are coupled drop natural
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frequencies. In the case when surface tension is moderately large with 6 = 1.0 x 107> shown in Fig. 8(a),
crossings between parabolic curves and horizontal lines can be seen just at the small value region of p near the
ordinate. However, as shown in Fig. 7, in which uncoupled natural frequency variations of drop with g, with
decrease in 0 the coupled natural frequencies of the drop decrease and the number of cross-points with
horizontal lines gradually increases (Fig. 8(b) and (c)). In these crossing regions, the coupling may be
significant between drop motion and plate motion.

Variation of the lowest four coupled vibration modes are presented in Fig. 9, when 6 = 1.0 x 10~ which
corresponds to Fig. 8(c), for p = 1,5, 10. We see that the order of vibration modes changes with g, i.e. modes
in which liquid drop deformation is predominant and those in which plate motion is predominant.
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Finally, we shall compare the dynamical coupling characteristics of the present system with those of a plate
carrying a ‘spring-mass’ system [6]. In the previous study [6], we have analyzed coupled vibration
characteristics of a cantilever plate with attached ‘spring—mass’ system, i.¢. the liquid drop was simply modeled
as a ‘spring-mass’ system.

Fig. 10(a) shows w — w,,, diagram of the previous system [6] when ‘spring—mass’ system is attached on the
center of a cantilever plate (&, n,) = (0.5, 0.5), where a,, is the mass ratio (= m,/pHhL), when stiffness
parameter oy, = keLz/D = 10, plate thickness ratio o =h/L = 0.01, aspect ratio A= 1.0. In the figure,
horizontal one-dotted lines are uncoupled natural frequencies of the plate, while a red broken curve
corresponds to that of ‘spring—mass’ system. We found that with increasing a,,,, e.g. increasing mass i,
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Fig. 9. Coupled vibration modes with density ratio p, (&p,7y) = (0.5,0.5), f = 0.5, 2 =0.01, 6 = 1.0 x 1077,

uncoupled natural frequency of ‘spring—mass’ system decreases, and that at the regions crossing points
between one-dotted lines and a red curve, there seems curve veering in coupled natural frequency curves
(shown in broken lines), and an exchange of vibration modes can be recognized.

While for the present case in which plate and a liquid drop are coupling, we choose, for example, reciprocal
of B, 1/ =a/h, as a variable parameter in the abscissa, then we get similar @ — 1/ diagram shown in
Fig. 10(b). In the figure, the lowest five coupled natural frequency curves are mainly presented together
with uncoupled natural frequencies of the plate and the drop with horizontal broken lines and
one-dotted curves, respectively. Other system parameters are taken as p=p,/p, =0.5, 0 = 1.0 x 1076,
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o=h/L=0.005 (&,ny) =(0.50.5). First, we shall follow the lowest frequency curve along the
abscissa 1/f, it is nearly straight line until 1/~ 8 and corresponds to a coupled natural frequency in
which plate motion is predominant. At 1/f ~ 8 region, this line makes curve veering with coupled
drop frequency curve which rapidly downs from the upper-left side in the diagram, i.e. this line turns
down following the uncoupled drop frequency, and coupled drop frequency curve follows the horizontal
line. At this region, an exchange of vibration modes occurs, i.e. former downward frequency curve
tends to that for the coupled drop frequency, while the latter horizontal frequency line tends to that
for the coupled plate frequency, respectively. Further increase in 1/f3, the horizontal line made the second
veering with coupled drop frequency curve of the 2nd mode. Similar curve veerings continue infinitely because
the added liquid drop has infinite number of freedom, i.e. infinite number of vibration modes. This is a
significant different characteristic of the present system from the previous case with coupled ‘spring—mass’
system [6].

The same is true for the higher vibration mode curves of a coupled plate frequency. Note that similar
diagram can be obtained by choosing 1/p = p,/p, as a variable parameter in the abscissa.

4. Conclusions

From the energy point of view, by using Rayleigh— Ritz method, we have formulated the coupled free
vibration problems between a cantilever thin elastic plate and a hemi-spherical liquid drop attached on in zero-
gravity condition, which finally rendered into an eigenvalue problem. In some numerical calculations,
difference of the vibrational characteristics of the present coupled system in which plate and liquid drop are
coupling, i.e. one multi-degree of freedom system and another multi-degree of freedom system are coupling,
and those of the previous one [6] in which plate and a ‘spring—mass’ system are coupling, i.e. multi-degree of
freedom system and a single-degree of freedom system are coupling, have been demonstrated.

Appendix A. Integration shown in Eq. (63)

Integration involving clamped—free beam function X;(¢):

1
7= [ XiOXUO de = . A1)
0
YaX (&) 0X k() B+ %0)0:Q; — ovipy; (i = k),
1 _ _
T :/0 o @E - { HC = C) /(@ — o) (i#h), A2
%X (&) (1 = 20)%0; + avipy; (i = k),
20 _ _
Ji = / R Xi($)dE = { 4.0, — 4(Ci — Cr) (@ — o) (i1, (A.3)
LT X (&) 07X k(©)
J?kzz/ o7 asz dé = o} o, (A.4)
Cie = oy (o - O — vi - ok - 1), (A.5)
Q; = coth o; 4 cot a;, (A.6)

where 0, is Kronecker’s delta.
Integration involving free—free beam function Y;(y):

|
K = /0 Y (0 Y1) dn = 51, A7)
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e o 4Dy — D /(B — B (#D,
132Y () BAO+ ;-7 — B0 (=D,
20 = 7J d = — A9
Ri / o Y= 4p0, 15 @) — 4Dy — DI~ B G, (A9
LY ) Y ()
Kj = /O o oy d1="Fon. (A.10)
Dy = BIBUQs + i - ), (A.11)
0; = coth f§; + cot f;. (A.12)
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