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Abstract

Coupled free vibration analysis has been performed on a cantilever thin elastic plate carrying a liquid drop attached on

its arbitrary point in a zero-gravity environment. A liquid drop, having slipping edge boundary condition on the plate, has

been treated as an inviscid ideal liquid with hemi-spherical shape. By using Rayleigh–Ritz method, coupled hydroelastic

problem has been rendered into an eigenvalue problem, from which one can obtain coupled natural frequencies and modes

of vibration. Since we have treated an attached drop as an ideal liquid drop not as added rigid mass or ‘mass–spring’

system, the problem consists of coupled system between a plate and a liquid drop, which have both multi-degrees of

freedom. In the numerical calculations, present results have been compared with the results in which a liquid drop have

treated as a ‘mass–spring’ system which has previously been presented by the authors.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Utilizing a low-gravity environment in space, a series of experiments, e.g. International Microgravity
Laboratory (IML), United State Microgravity Laboratory (USML), First Microgravity Science Laboratory
(MSL-1), etc., had been conducted in various fields of science such as material science, fundamental physics,
life science, bioastronautics and so on. In material science, for example, new or high-quality materials, which
cannot be produced on the ground, have been developed in space [1]. In such condition, heated liquefied
material with free surface deforms to a spherical shape, minimizing its surface energy, and perfect spherical
material with isotropic property can be obtained [2,3]. However, there are some problems which cannot be
predicted on earth, i.e. Marangoni convection (vibration) [4], g-gitter [5], etc., which causes imperfection in
shape or anisotropy of materials. Therefore, it may be a technical importance to clarify the vibrational
behavior of a liquid drop itself or coupled dynamic behavior of a liquid drop with elastic supporting devices in
low-gravity condition.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

a radius of liquid drop
D flexural rigidity of plate ð¼ Eh3=

12ð1� n2ÞÞ
E Young’s modulus of plate
h thickness of plate
H width of plate
L length of plate
~L; ~~L; L̄; ¯̄L Lagrangian

m circumferential wavenumber
Pm

n ðcos yÞ associated Legendre function
rðrÞ; y;j spherical coordinate system

(non-dimensional form)
R position vector
T kinetic energy
t ðtÞ time
U potential energy
V volume of liquid drop
W ðx; y; tÞ ðw̄Þ displacement of plate
X iðxÞ clamped–free beam function
Y jðZÞ free–free beam function
xðxÞ; yðZÞ; z Cartesian coordinate system fixed at

corner point of plate
ðx0; y0Þðx0; Z0Þ location of attached liquid drop

Zðy;j; tÞ ðz̄Þ displacement of liquid–free surface
a plate thickness ratio ð¼ h=LÞ

ai characteristic values for clamped-free
beam function

b drop radius ratio ð¼ h=aÞ

bj characteristic values for free–free beam
function

d surface tension parameter ð¼ sh2
�

DÞ

D̄ parameter ð¼ a2b2=ld ¼ DHh2=sa2L3Þ

n Poisson’s ratio of plate
l aspect ratio ð¼ L=HÞ

lmn zero of dPm
n ðcos yÞ=dy ¼ 0 at y ¼ p=2

rd density of liquid
rp density of plate
r̄ density ratio ð¼ rp

.
rdÞ

s surface tension
Fðr; y;j; tÞ velocity potential of liquid
X rotational angular velocity vector
OðoÞ natural circular frequency o ¼ O=Op

�
¼ O=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=rphL4

q
Þ

Op ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D
.
rphL4

r
Ō

2
parameter ð¼ O2

p

.
O2

d ¼ Drda3
.
srphL4

¼ a4
�
r̄b3dÞ
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Taking up a coupled dynamic system in which liquid drop is added on a thin elastic structure from those
above problems, we have simply modeled such system as a hemi-spherical liquid drop is added on a cantilever
thin plate. And as a preliminary analysis, we have reduced added liquid drop to a simple ‘spring–mass’ system,
i.e. to one-degree of freedom system [6], and clarified coupled natural frequencies and vibration modes by
using Rayleigh– Ritz method, in which influence of an attached ‘spring–mass’ system, i.e. attached position,
relative values of mass and spring constant, have been studied. Optimal position of an attached ‘spring–mass’
system to minimize coupled plate natural frequency has also been investigated.

As the next step, in the present paper, we shall treat added liquid drop as a frictionless ideal liquid drop of
hemi-spherical shape, and clarify dynamic coupling characteristics with elastic plate by Rayleigh– Ritz method
as has been used in Ref. [6]. When we look over the previous studies on liquid motions in a gravitational field,
which have been treated from the energy method, in 1958, Miles proposed energy method for sloshing
problem in a flexible tank [7]. In 1967, Luke applied variational principle to water wave problem [8] and
Whitham analyzed nonlinear dispersion problem of water wave by using energy method [9]. Komatsu used
Hamilton’s principle to solved nonlinear sloshing problem of a liquid in an arbitrary shape tank [10]. As for a
liquid drop problem, Natarajan and Brown [11,12] analyzed quadratic and third-order resonances of a liquid
drop or bubble using modified Lagrangian which had been used by Luke [8] for free surface wave problem by
replacing the gravitational energy with surface energy. Azuma and Yoshihara analyzed large-amplitude drop
oscillations by using Lagrangian, which had been used in Refs. [11,12] and conducted experiment for mercury
drops in drop tower [13].

While as for studies on vibrations of elastic plate with added sub-dynamical system, Das and Navaratna
extended Young’s study [14] which has been applied to a beam vibration with mass, spring and dashpot,
to a simply supported rectangular plate at which one point is supported by a mass–spring system [15].
Snowdon studied forced vibration of a simply supported rectangular plate with an added mass or with a
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mass–spring–dashpot system, and obtained force transmissibility and driving-point impedance of a plate [16].
Nicholson and Bergman extended their study [17] to a plate system [18]. Trentin and Guyader used modal
sampling method to study response of a plate at medium frequency range in which a large number of modes
exist [19]. Similar problem for a plate with mass–spring system was analyzed by Dowell and Tang by using
asymptotic modal analysis [20]. Cha and Wong presented a method to analyze combined dynamical system
and compared the results with those by Lagrange multiplier method, and Green function method [21]. In the
optimization problem to maximize the fundamental natural frequency by adding support springs, Won and
Park treated cantilever beam and plate [22]. Wu treated rectangular plate carrying multiple three-degree of
freedom spring–mass system using equivalent mass method [23].

2. Free vibrations of a hemi-spherical drop on a rigid plane

First of all, we shall analyze free vibrations of a hemi-spherical drop alone on a rigid plane by using
Rayleigh–Ritz method, as a preliminary examination of the application of the energy method to a plate-drop
coupled dynamical system.

2.1. Analytical model

We shall consider small amplitude-free vibrations of a hemi-spherical drop of radius a on a rigid plane in a
zero-gravity environment, as shown in Fig. 1. Spherical coordinate (r; y;j) with its origin o at the center of the
drop base is used. Neglecting dynamics at the interface between liquid drop and base plane, e.g. contact angle,
we here just take the kinematic condition between drop and base plane into account. Then there may be two
types of contact conditions between drop and base, the one is slipping end condition (Fig. 1(a)) in which drop
can move freely on the base, while the other is anchored end condition (Fig. 1(b)) in which drop sticks on the
base along its circular boundary. In the present analysis, we shall employ the slipping condition: Fig. 1(a).

2.2. Basic equation

We assume that the liquid is incompressible, inviscid and behaves irrotational motion from which there
exists velocity potential of the liquid Fðr; y;j; tÞ, which satisfies Laplace equation

DF ¼
q
qr

r2
qF
qr

� �
þ

1

sin y
q
qy

sin y
qF
qy

� �
þ

1

sin2 y

q2F
qj2
¼ 0. (1)

Kinetic energy T is given by

T ¼
rd

2

Z 2p

0

Z p=2

0

Z f ðy;j;tÞ

0

frFðr; y;j; tÞ � rFðr; y;j; tÞgr2 sin ydrdy dj; (2)
Slipping edge Anchored edge

a

Z

a
Z

O O

z z
�

� �
�

(a) (b)

Fig. 1. Two types of contact conditions between semi-spherical drop and base.
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where f ðy;j; tÞ represents distances from origin to a free liquid surface:

f ðy;j; tÞ ¼ aþ Zðy;j; tÞ, (3)

and Zðy;j; tÞ is free surface displacement, rd is density of liquid. From the small amplitude assumption of the
drop, one can obtain f ðy;j; tÞ ¼ aþ Zðy;j; tÞ � a, and applying Green’s theorem to Eq. (2),

T ¼
rda2

2

Z 2p

0

Z p=2

0

Fðr; y;j; tÞ
qFðr; y;j; tÞ

qr

� �
r¼a

sin y d ydj. (4)

While potential energy U due to the liquid surface tension s is given by [11]

U ¼ s
Z 2p

0

Z p=2

0

f 2
ðy;j; tÞ 1þ

f 2
yðy;j; tÞ

f 2
ðy;j; tÞ

þ
1

sin2y

f 2
jðy;j; tÞ

f 2
ðy;j; tÞ

( )1=2

sin ydydj

� s
Z 2p

0

Z p=2

0

a2 sin ydydj. ð5Þ

Since

f 2
yðy;j; tÞ

f 2
ðy;j; tÞ

þ
1

sin2 y

f 2
jðy;j; tÞ

f 2
ðy;j; tÞ

may be small, putting

F y;j; tð Þ ¼
f 2
yðy;j; tÞ

f 2
ðy;j; tÞ

þ
1

sin2 y

f 2
jðy;j; tÞ

f 2
ðy;j; tÞ

and using Taylor expansions of 1þ F ðy;j; tÞ
� 	1=2

, we obtainffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F ðy;j; tÞ

p
� 1þ

F ðy;j; tÞ
2

. (6)

Then Eq. (5) renders as

U ¼ s
Z 2p

0

Z p=2

0

2aZðy;j; tÞ þ Z2ðy;j; tÞ þ
1

2
Z2

yðy;j; tÞ þ
1

sin2 y
Z2

jðy;j; tÞ
� �
 �

sin yd ydj: (7)

Here from the assumption of the incompressibility of the drop, we obtain

1

3

Z 2p

0

Z p=2

0

aþ Zðy;j; tÞ
� 	3

sin yd ydj� V ¼ 0, (8)

where V (� 2pa3
�
3) is volume of the drop. Using Eqs. (7) and (8), we have

U ¼ s
Z 2p

0

Z p=2

0

�Z2ðy;j; tÞ þ
1

2
Z2

yðy;j; tÞ þ
1

sin2 y
Z2

jðy;j; tÞ
� �
 �

sin yd ydj. (9)

Finally, we obtain Lagrangian ~L of the system,

~L ¼ T �U

¼
rda2

2

Z 2p

0

Z p=2

0

Fðr; y;j; tÞ
qFðr; y;j; tÞ

qr

� �
r¼a

sin ydy dj

� s
Z 2p

0

Z p=2

0

�Z2ðy;j; tÞ þ
1

2
Z2

yðy;j; tÞ þ
1

sin2 y
Z2

jðy;j; tÞ
� �
 �

sin yd ydj. ð10Þ

Here, in order to represent free surface displacement of the drop Zðy;j; tÞ by means of the velocity potential
Fðr; y;j; tÞ, we use kinematic condition at the free surface.

qZðy;j; tÞ
qt

¼
qFðr; y;j; tÞ

qr
at r ¼ a in the range 0oyop=2, (11)
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assuming Zðy;j; tÞ and Fðr; y;j; tÞ in the forms as

Zðy;j; tÞ ¼ zðy;jÞ cos Ot,

Fðr; y;j; tÞ ¼ � Ofðr; y;jÞ sin Ot ð12Þ

and substituting into Eq. (11), we obtain the relation between zðy;jÞ and fða; y;jÞ as

zðy;jÞ ¼
qfða; y;jÞ

qr
. (13)

Introducing Eq. (13) into Eq. (10), and integrating with t for one period of vibration, we obtain Lagrangian

L̄ ¼ ðO=pÞ ~L,

L̄ ¼
rda2O2

2

Z 2p

0

Z p=2

0

fðr; y;jÞ
qfðr; y;jÞ

qr

� �
r¼a

sin ydydj

� s
Z 2p

0

Z p=2

0

�
qfðr; y;jÞ

qr

� �2

þ
1

2

@2fðr; y;jÞ
qrqy

� �2

þ
1

sin2 y

q2f r; y;jð Þ

qrqj

� �2
( )" #

r¼a

sin ydy dj. ð14Þ
2.3. Method of solution

The velocity potential fðr; y;jÞ is assumed to be of the form

fðr; y;jÞ ¼
X1
m¼0

X1
n¼0

Amn

r

a

� 
lmn

Pm
lmn
ðcos yÞ cos mj, (15)

where Pm
lmn
ðcos yÞ is the associated Legendre function of the first kind, and lmn are the roots of

dPm
lmn
ðcos yÞ

d y

����
y¼p=2

¼ 0. (16)

Substituting Eq. (15) into Eq. (14),

L̄ ¼
rdaO2p

2

X1
m¼0

X1
n¼1

X1
s¼1

AmnAmslms

Z p=2

0

Pm
lmn
ðcos yÞPm

lms
ðcos yÞ sin yd y

�
sp
a2
�
X1
m¼0

X1
n¼1

X1
s¼1

AmnAmslmnlms

Z p=2

0

Pm
lmn
ðcos yÞPm

lms
ðcos yÞ sin yd y

"

þ
1

2

X1
m¼0

X1
n¼1

X1
s¼1

AmnAmslmnlms

Z p=2

0

q
qy

Pm
lmn
ðcos yÞ

� �
q
qy

Pm
lms
ðcos yÞ

� ��

þ
m2

sin2 y
Pm
lmn
ðcos yÞPm

lms
ðcos yÞ

�
sin yd y

�
, ð17Þ

and using following formulas of the associated Legendre function,Z p=2

0

Pm
lmn
ðcos yÞPm

lms
ðcos yÞd y ¼

1

2lmn þ 1
�
ðlmn þmÞ!

ðlmn �mÞ!
dns, (18)

Z p=2

0

qPm
lmn
ðcos yÞ

qy

� �
qPm

lms
ðcos yÞ

qy

� �
þ

m2

sin2 y
Pm
lmn
ðcos yÞPm

lms
ðcos yÞ

� �
sin yd y

¼
lmnðlmn þ 1Þ

2lmn þ 1
�
ðlmn þmÞ!

lmn �mð Þ!
dns. ð19Þ
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We obtain

L̄ ¼
X1
m¼0

X1
n¼1

A2
mn O2

�
slmn

rda3
ðlmn � 1Þðlmn þ 2Þ

� �
lmn

2lmn þ 1
�
ðlmn þmÞ!

ðlmn �mÞ!
, (20)

where L̄ ¼ 2L̄=rdap.
Then applying Rayleigh– Ritz method to the above equation,

q ¯̄L

qAmn

¼ 0, (21)

q ¯̄L

qAmn

¼
q

qAmn

X1
m¼0

X1
n¼1

A2
mn O2 �

slmn

rda3
ðlmn � 1Þðlmn þ 2Þ

� �
lmn

2lmn þ 1
�
ðlmn þmÞ!

ðlmn þmÞ!

" #
¼ 0 (22)

from which one can obtain

O2 �
slmn

rda3
ðlmn � 1Þðlmn þ 2Þ

� �
Amn ¼ 0, (23)

which renders,

O2 ¼ lmnðlmn � 1Þðlmn þ 2Þ
s

rda3
. (24)

This represents natural circular frequency of a hemi-spherical drop. Note that the Eq. (24) also represents
natural frequency of a spherical drop [24]. Here, in the present case when y ¼ 90�, lmn are even numbers 2n for
m is even, while these are odd numbers 2n� 1 for m is odd as

O2 ¼ 2nð2n� 1Þð2nþ 2Þ
s

rda3
for m ¼ 2j,

¼ ð2n� 1Þð2n� 2Þð2nþ 1Þ
s

rda3
for m ¼ 2j þ 1. ð25Þ

So far we have obtained natural frequency of a hemi-spherical drop by using energy method, i.e.
Rayleigh– Ritz method.
2.4. Numerical results

Natural circular frequencies of a semi-spherical drop O=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=rda3

p
calculated by Eq. (25) are presented in

Table 1, and corresponding vibration modes are shown in Fig. 2 for up to the 4th mode with m ¼ 0, 1, 2.
m ¼ 0 mode is an axisymmetric mode, while those with ma0 are asymmetric modes. The first asymmetric
vibration mode with m ¼ 1 which has one nodal line along a meridian direction j, has zero frequencies
because of the slipping end conditions of the drop on the base here employed.
Table 1

Natural circular frequencies of a semi-spherical drop O=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=rd a3

p
m First Second Third Fourth

0 2.8284271 8.4852814 15.491933 23.664319

1 0 5.4772256 11.832160 19.442222

2 2.8284271 8.4852814 15.491933 23.664319

3 5.4772256 11.832160 19.442222 28.142495
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Fig. 2. Vibration modes of a semi-spherical drop on rigid plane.
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3. Free vibrations of a plate-drop coupled system

3.1. Basic equation

Next, we shall consider coupled free vibrations of a thin cantilever plate attached by a liquid drop in a
zero-gravity environment. Cartesian coordinate system x�y�z is taken as shown in Fig. 3. The plate
is thin and isotropic, with width H, length L, and thickness h. While the liquid drop attached at ðx0; y0Þ

on the plate, is incompressible, inviscid liquid and behaves irrotational motion. The static shape of the
drop is assumed to be hemi-sphere with radius r ¼ a, which is smaller than length L, and width H of the
plate. The boundary condition of the drop on the plate is the slipping edge condition as described
in the previous chapter (see Fig. 1(a)). Here, we shall use ðo; x; y; zÞ coordinate system for the plate, while
for the drop we shall use o; r; y;jð Þ coordinate system whose origin is fixed at point ðx0; y0Þ on the plate.
Displacements of the plate and the free surface of the drop are represented as W ðx; y; tÞ and Zðy;j; tÞ,
respectively.

The velocity of the drop can be represented by the velocity potential Fðr; y;j; tÞ which satisfies the Laplace

equation,

DFðr; y;j; tÞ ¼
q
qr

r2
qFðr; y;j; tÞ

qr

� �
þ

1

sin y
q
qy

sin y
qFðr; y;j; tÞ

qy

� �
þ

1

sin2 y

q2Fðr; y;j; tÞ
qj2

¼ 0. (26)

Kinetic energy T and potential energy U of the system are

T ¼
rph

2

Z H

0

Z L

0

_W
2
ðx; y; tÞdxdy

þ
rd

2

Z 2p

0

Z p=2

0

Z a

0

_W ðx0; y0; tÞ þX� Rþ rFðr; y;j; tÞ
� 	

� _W ðx0; y0; tÞ þX� RþrFðr; y;j; tÞ
� 	

r2 sin ydrdy dj, ð27Þ

U ¼
D

2

Z H

0

Z L

0

q2W ðx; y; tÞ
qx2

� �2
"

þ
q2W ðx; y; tÞ

qy2

� �2

þ2n
q2W ðx; y; tÞ

qx2

q2W ðx; y; tÞ

qy2
þ 2 1� nð Þ

q2W ðx; y; tÞ
qxqy

� �2
#
dxdy

þ s
Z 2p

0

Z p=2

0

�Z2ðy;j; tÞ þ
1

2
Z2

yðy;j; tÞ þ
1

sin2 y
Z2

jðy;j; tÞ
� �
 �

sin ydy dj: ð28Þ
z

y

x

h

H

a

o

O (x0, y0)

W (x, y, t)z
�

�

Fig. 3. Cantilever plate attached with semi-spherical drop.
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In the above equations, X� R represents an effect of rotational motion of the drop, rp is the density and D

is the flexural rigidity of the plate. Then we can obtain Lagrangian ¯̄L as

¯̄L ¼ T �U

¼
rph

2

Z H

0

Z L

0

_W
2
ðx; y; tÞdxdy

þ
rd

2

Z 2p

0

Z p=2

0

Z a

0

_W ðx0; y0; tÞ þX� RþrFðr; y;j; tÞ
� 	

� _W x0; y0; t
� �

þX� Rþ rFðr; y;j; tÞ
� 	

r2 sin y drdydj

�
D

2

Z H

0

Z L

0

q2W ðx; y; tÞ

qx2

� �2
"

þ
q2W ðx; y; tÞ

qy2

� �2

þ 2n
q2W ðx; y; tÞ

qx2

q2W ðx; y; tÞ
qy2

þ2 1� nð Þ
q2W ðx; y; tÞ

qxqy

� �2
#
dxdy

� s
Z 2p

0

Z p=2

0

�Z2ðy;j; tÞ þ
1

2
Z2

yðy;j; tÞ þ
1

sin2 y
Z2

jðy;j; tÞ
� �
 �

sin ydy dj. ð29Þ

In the analysis hereafter, we shall assume that the drop behaves just vertical motion with small amplitude on
the plate ignoring the rotational motion, i.e. X� R ¼ 0, which can be realized when a drop is attached on a
loop of vibration mode of the plate. Here introducing the following non-dimensional parameters, the above-
obtained equations are non-dimensionalized with L̄ ¼ 2 ¯̄L

.
sa2,

x ¼
x

L
; Z ¼

y

H
; w̄ ¼

W

h
; t ¼ Opt; Od ¼

ffiffiffiffiffiffiffiffiffiffi
s

rda3

r
,

a ¼
h

L
; l ¼

L

H
; x0 ¼

x0

L
; Z0 ¼

y0

H
; w̄ ¼

W

h
,

r ¼
r

a
; f̄ ¼

F
Opa2

; z̄ ¼
Z

a
; b ¼

h

a
; Op ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D

rphL4

s
,

Ō ¼
Op

Od

¼

ffiffiffiffiffiffiffiffiffiffi
a4

b3r̄d

s
; d ¼

sh2

D
; D̄ ¼

a2b2

ld
; r̄ ¼

rp

rd

, ð30Þ

where l is the aspect ratio of the plate, a is non-dimensional thickness of the plate, b is radius ratio, r̄ is density
ratio, d is surface tension parameter. With parameters l and a, plate dimension is defined, and with b drop
dimension is determined. While r̄ and d are the parameters, which characterize material property. These
parameters represent the present coupled vibration system together with attached position of the drop ðx0; Z0Þ.

L̄ ¼ D̄
Z 1

0

Z 1

0

qw̄ðx; Z; tÞ
qt

� �2

dxdZ

� D̄
Z 1

0

Z 1

0

q2w̄ðx; Z; tÞ

qx2

� �2
"

þ l4
q2w̄ðx; Z; tÞ

qZ2

� �2

þ 2nl2
q2w̄ðx; Z; tÞ

qx2
q2w̄ðx; Z; tÞ

qZ2

þ2 1� nð Þl2
q2w̄ðx; Z; tÞ

qxqZ

� �2
#
dxdZ

þ Ō2
Z 2p

0

Z p=2

0

Z 1

0

b2
qw̄ðx0; Z0; tÞ

qt

� �2

þ 2b
qw̄ðx0; Z0; tÞ

qt
qf̄ðr; y;j; tÞ

qr
þ

1

r
qf̄ðr; y;j; tÞ

qy

�"

þ
1

r sin y
qf̄ðr; y;j; tÞ

qj

��
r2 sin ydrdydj
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þ Ō
2
Z 2p

0

Z p=2

0

f̄ðr; y;j; tÞ
qf̄ðr; y;j; tÞ

qr

� �
r¼1

sin ydy dj

� 2

Z 2p

0

Z p=2

0

�z̄
2
ðy;j; tÞ þ

1

2
z̄
2

yðy;j; tÞ þ
1

sin2 y
z̄
2

jðy;j; tÞ
� �
 �

sin ydydj. ð31Þ

In order to represent free surface displacement of the drop z̄ðy;j; tÞ by means of the velocity potential
f̄ðr; y;j; tÞ, we use kinematic condition at the free surface.

qz̄ðy;j; tÞ
qt

¼
qf̄ðr; y;j; tÞ

qr
at r ¼ 1 in the range 0oyop=2. (32)

Here, z̄ðy;j; tÞ, f̄ðr; y;j; tÞ and w̄ðx; Z; tÞ are assumed in the forms as

z̄ðy;j; tÞ ¼ zðy;jÞ cos ot,

f̄ðr; y;j; tÞ ¼ � ofðr; y;jÞ sin ot,

w̄ðx; Z; tÞ ¼ wðx; ZÞ cos ot, ð33Þ

where o is non-dimensional coupled natural frequency defined as

o ¼
O
Op

; Op ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D

rphL4

s
. (34)

With Eqs. (32) and (33), we obtain the relation between zðy;jÞ and fðr; y;jÞ as

zðy;jÞ ¼
qfðr; y;jÞ

qr

����
r¼1

. (35)

Substituting Eqs. (33) and (35) into Eq. (31), and integrating with t, we obtain Lagrangian ~~L for the coupled
dynamic system between plate and drop.

~~L ¼ D̄o2

Z 1

0

Z 1

0

w2ðx; ZÞdxdZ

� D̄
Z 1

0

Z 1

0

q2wðx; ZÞ

qx2

� �2
"

þ l4
q2wðx; ZÞ

qZ2

� �2

þ 2nl2
q2wðx; ZÞ

qx2
q2wðx; ZÞ

qZ2
þ2ð1� nÞl2

q2wðx; ZÞ
qxqZ

� �2
#
dxdZ

þ Ō
2
o2

Z 2p

0

Z p=2

0

Z 1

0

b2w2ðx0; Z0Þ þ 2bwðx0; Z0Þ
�

�
qfðr; y;jÞ

qr
þ

1

r
qfðr; y;jÞ

qy
þ

1

r sin y
qfðr; y;jÞ

dj

� ��
r2 sin ydrdydj

þ Ō2o2

Z 2p

0

Z p=2

0

fðr; y;j; tÞ
qfðr; y;j; tÞ

qr

� �
r¼1

sin ydydj

� 2

Z 2p

0

Z p=2

0

�
qfðr; y;jÞ

qr

� �2
"

þ
1

2

qfðr; y;jÞ
qrqy

� �2

þ
1

sin2 y

qfðr; y;jÞ
qrqj

� �2
( )#

r¼1

sin y d ydj. ð36Þ
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3.2. Method of solution

We will apply Rayleigh– Ritz method to Eq. (36). The deflection of the plate wðx; ZÞ and the velocity
potential of the drop fðr; y;jÞ are assumed to be of the forms:

wðx; ZÞ ¼
X1
i¼1

X1
j¼1

AijX iðxÞY jðZÞ, (37)

fðr; y;jÞ ¼
X1
m¼0

X1
n¼1

Bmnrlmn Pm
lmn
ðcos yÞ cos mj, (38)

where Aij and Bmn are the unknown coefficients. X iðxÞ and Y jðZÞ are admissible beam functions which satisfy
clamped– free boundary conditions and free– free conditions, respectively, which are defined as follows [25]:

X iðxÞ ¼ miðcosh aix� cos aixÞ � niðsinh aix� sin aixÞ; ð0oxo1; i ¼ 1; 2; 3; . . .Þ (39)

mi ¼
cosh ai þ cos ai

sinh ai � sin ai

; ni ¼
sinh ai � sin ai

sinh ai � sin ai

, (40)

where ai are the roots of

cosh ai � cos ai ¼ �1, (41)

a1 ¼ 1:875; a2 ¼ 4:694; a3 ¼ 7:854; . . . for clamped– free beam function:

Y 1ðZÞ ¼ 1,

Y 2ðZÞ ¼
ffiffiffi
3
p
ð2Z� 1Þ,

Y jðZÞ ¼ m̄jðcosh bjZþ cos bjZÞ � n̄jðsinh bjZþ sin bjZÞ

ð0oZo1; j ¼ 3; 4; 5; . . .Þ, ð42Þ

m̄j ¼
cosh bj � cos bj

sinh bj � sin bj

; n̄j ¼
sinh bj þ sin bj

sinh bj � sin bj

, (43)

where bjð3pjÞ are the roots of

cosh bj � cos bj ¼ 1, (44)

b3 ¼ 4:730; b4 ¼ 7:853; b5 ¼ 10:995; . . . for free– free beam function.
While Pm

lmn
ðcos yÞ is the associated Legendre function of the first kind, and lmn are the roots of

dPm
lmn
ðcos yÞ

dy

����
y¼p=2

¼ 0. (45)

Substituting Eqs. (37) and (38) into Eq. (36),

~~L ¼ D̄o2
X1
i¼1

X1
j¼1

X1
k¼1

X1
l¼1

AijAkl

Z 1

0

X iðxÞX kðxÞdx
Z 1

0

Y jðZÞY lðZÞdZ

� D̄
X1
i¼1

X1
j¼1

X1
k¼1

X1
l¼1

AijAkl

Z 1

0

d2X iðxÞ

dx2
d2X kðxÞ

dx2
dx
Z 1

0

Y jðZÞY lðZÞdZ
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þ l4
Z 1

0

X iðxÞX kðxÞdx
Z 1

0

d2Y jðZÞ
dZ2

d2Y lðZÞ
dZ2

dZþ nl2
Z 1

0

d2X iðxÞ

dx2
X kðxÞdx

Z 1

0

Y jðZÞ
d2Y lðZÞ
dZ2

dZ
�

þ

Z 1

0

X iðxÞ
d2X kðxÞ

dx2
dx
Z 1

0

d2Y jðZÞ
dZ2

Y lðZÞdZ

)
þ 2ð1� nÞl2

Z 1

0

dX iðxÞ
dx

dX kðxÞ
dx

dx
Z 1

0

dY jðZÞ
dZ

dY lðZÞ
dZ

dZ

#

þ Ō
2
o2 b2

X1
i¼1

X1
j¼1

X1
k¼1

X1
l¼1

AijAklX iðx0ÞX kðx0ÞY jðZ0ÞY lðZ0Þ
Z 2p

0

Z p=2

0

Z 1

0

r2 sin y drdy dj

"

þ 2b
X1
i¼1

X1
j¼1

X1
m¼0

X1
n¼1

AijBmnX iðx0ÞY jðZ0Þ
Z 2p

0

Z p=2

0

Z 1

0

lmnrlmn�1Pm
lmn
ðcos yÞ cos mj

n

þ
1

r
rlmn

dPm
lmn
ðcos yÞ

dy

� �
cos mj�

m

r sin y
rlmn Pm

lmn
ðcos yÞ sin mj

�
r2 sin ydrdy dj

�

þ Ō
2
o2
X1
m¼0

X1
n¼1

X1
q¼0

X1
s¼1

BmnBqs

Z 2p

0

Z p=2

0

lqsP
m
lmn
ðcos yÞPq

lqs
ðcos yÞ cos mj cos qj

n o
sin ydydj

� 2

Z 2p

0

Z p=2

0

�
X1
m¼0

X1
n¼1

X1
q¼0

X1
s¼1

BmnBqslmnlqsP
m
lmn
ðcos yÞPq

lqs
ðcos yÞ cos mj cos qj

"

þ
1

2

X1
m¼0

X1
n¼1

X1
q¼0

X1
s¼1

BmnBqslmnlqs

dPm
lmn
ðcos yÞ

dy

� �
dP

q
lqs
ðcos yÞ

dy

( )
cos mj cos qj

þ
1

2sin2 y

X1
m¼0

X1
n¼1

X1
q¼0

X1
s¼1

BmnBqsmqlmnlqsP
m
lmn
ðcos yÞPq

lqs
ðcos yÞ sin mj sin qj

#
sin ydydj. ð46Þ

In the above equation, we shall use integration formula on the trigonometric functions
sin mj and cos mj, and on the associated Legendre function Pm

lmn
ðcos yÞ as Eq. (18), (19) and

Z p=2

0

Pl0n
ðcos yÞ sin yd y ¼

1 for s ¼ 0; 0 for s40 : l0n ¼ 2s;

P2sðoÞ

2sþ 2
¼
ð�1Þsð2s� 1Þ!

ð2sþ 2Þ!
: l0n ¼ 2sþ 1;

8><
>: (47)

M0n ¼

Z p
2

0

qPl0n
ðcos yÞ
qy

� �
sin ydy. (48)

Finally, we obtain

~~L ¼ D̄o2
X1
i¼1

X1
j¼1

A2
ijdikdjl � D̄

X1
i¼1

X1
j¼1

X1
k¼1

X1
l¼1

AijAkl ½ða4i þ l4b4j Þdikdjl

þ nl2ðJ20
ik K02

jl þ J02
ik K20

jl Þ þ 2ð1� nÞl2J11
ik K11

jl �

þ 2pŌ2o2 b2

3

X1
i¼1

X1
j¼1

X1
k¼1

X1
l¼1

AijAklX iðx0ÞX kðx0ÞY jðZ0ÞY lðZ0Þ

"

þ2b
X1
i¼1

X1
j¼1

X1
n¼1

AijB0nX iðx0ÞY jðZ0Þ
M0n

l0n þ 2

#

þ
pŌ2o2

2

X1
n¼1

B2
0n

l0n

2l0n þ 1
� p

X1
n¼1

B2
0nl

2
0n �

1

2l0n þ 1
þ

l0nðl0n þ 1Þ

2ð2l0n þ 1Þ

� �
;

i ¼ 1; 2; . . . ; j ¼ 1; 2; . . . ; k ¼ 1; 2; . . . ; i; l ¼ 1; 2; . . . ; j; n ¼ 1; 2; . . . . ð49Þ
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It should be noted here that from the orthogonality of the trigonometric functions, only m ¼ q ¼ 0 terms,
i.e. l0n, have been remained in the integration of summation terms in m and q in Eq. (46), where l0n

corresponds to lmn when m ¼ 0 and are even integers, i.e. 2, 4, 6,y. Integrations for the beam functions X iðxÞ
and Y jðZÞ, J11

ik ; K11
jl , etc. shown above are presented in Appendix A.

Applying Rayleigh– Ritz method to the above equation

@ ~~L

@Aij

¼ 0;
@ ~~L

@B0n

¼ 0, (50)

q ~~L
qAij

¼ 2D̄o2
X1
k¼1

X1
l¼1

Akldikdjl

� 2D̄
X1
k¼1

X1
l¼1

Akl ða4i þ l4b4j Þdikdjl þ nl2ðJ20
ik K02

jl þ J02
ik K20

jl Þ þ 2ð1� nÞl2J11
ik K11

jl

h i

þ 4pŌ2o2 b2

3

X1
k¼1

X1
l¼1

AklX iðx0ÞX kðx0ÞY jðZ0ÞY lðZ0Þ þ b
X1
n¼1

B0nX iðx0ÞY jðZ0Þ
M0n

l0n þ 2

" #
¼ 0, ð51Þ

q ~~L
qB0n

¼ 4pbŌ2o2
X1
i¼1

X1
j¼1

AijX iðx0ÞY jðZ0Þ
1

l0n þ 2
M0n

þ pB0n Ō2o2 � l0nðl0n � 1Þðl0n þ 2Þ
n o l0ndns

2l0n þ 1
¼ 0. ð52Þ

Then we can obtain frequency equation in the matrix form as

D̄Kijkl 0

0
pl20nðl0n � 1Þðl0n þ 2Þdns

2l0n þ 1

2
664

3
775

2
664

� o2

2 D̄dikdjl þ
2pb2Ō2

3
X iðx0ÞX kðx0ÞY jðZ0ÞY lðZ0Þ

( )
4pbŌ

2
X iðx0ÞY jðZ0Þ

M0n

l0n þ 2

4pbŌ
2
X iðx0ÞY jðZ0Þ

M0n

l0n þ 2

pŌ
2
l0ndns

2l0n þ 1

2
666664

3
777775

3
777775

Akl

B0n

( )
¼ 0, ð53Þ

where

Kijkl ¼ 2 a4i þ l4b4j
� 


dikdjl þ nl2 J20
ik K02

jl þ J02
ik K20

jl

� 

þ 2ð1� nÞl2J11

ik K11
jl

n o
(54)

or putting

M ¼

2 D̄dikdjl þ
2pb2Ō

2

3
X iðx0ÞX kðx0ÞY jðZ0ÞY lðZ0Þ

( )
4pbŌ

2
X iðx0ÞY jðZ0Þ

M0n

l0n þ 2

4pbŌX iðx0ÞY jðZ0Þ
M0n

l0n þ 2

pŌ2l0ndns

ð2l0n þ 1Þ

2
666664

3
777775, (55)

K ¼

D̄Kijkl 0

0
pl20nðl0n � 1Þðl0n þ 2Þdns

2l0n þ 1

2
64

3
75, (56)
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Eq. (53) yields

K� o2M
� � Aij

B0n

( )
¼ 0 (57)

from which one can obtain coupled natural frequencies as eigenvalues, and vibration modes as eigenvectors.

3.3. Numerical results

The present plate–drop coupled dynamical system can be represented by six system parameters: aspect ratio
of the plate l � L=H, plate thickness ratio a � h=L, drop radius ratio b ¼ h=a, density ratio r̄ � rp=rd ,
surface tension parameter d � sh2=D, and attached position of the drop ðx0; Z0Þ. Numerical calculations have
been carried out varying these system parameters to clarify the influence of attached drop on the coupled
dynamical characteristics of a plate. Poisson’s ratio n was taken as 0.3. In the calculation, unknown terms in
Eq. (53) were taken up to i ¼ j ¼ k ¼ l ¼ n ¼ 8, to obtain reliable values as engineering data. Numerical
calculations have been conducted programming ourselves by FORTRAN except subroutine programs, which
find eigenvalue and eigenvector and are developed as Library program of Computer Center of Tohoku
University, Japan.

3.3.1. Uncoupled vibrations of plate and drop

First of all, we shall see the uncoupled vibration characteristics of a plate alone. Variations of uncoupled
natural frequencies of a cantilever plate op with aspect ratiol are shown in Fig. 4. In the numerical calculation,
0.1 0.2 0.4 0.6 1

10

100

�
p

�

0.8 2 4

Fig. 4. Variation of natural frequency of a cantilever plate op with aspect ratio l.
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unknown terms were taken as k ¼ 8; l ¼ 8. For convenience, vibration modes when l ¼ 4.0 are presented in
the right-hand side of the figure. In general, natural frequencies that have nodal line in vibration mode
perpendicular to the plate axis ðxÞ are nearly constant with l, while those, which have nodal line parallel to the
plate axis, increase with increase in l. With the variation of l, exchange of the vibration modes can be
observed. Furthermore, one can recognize the veering and crossing of the frequency curves [26,27]. In order to
distinguish these two, step size for l in the numerical calculation was taken to be small as much as possible.
More details on frequency curve’s veering and crossing in a cantilever plate have been studied in Ref. [25]. The
lowest four vibration modes are presented for three kinds of the aspect ratio l ¼ 0.5, 1 and 2 in Fig. 5.

While uncoupled natural frequency of a drop od can be obtained by putting Akl � 0 in Eq. (53), or a non-
dimensional form of Eq. (24),

od ¼
1

Ō

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0nðl0n � 1Þðl0n þ 2Þ

p
, (58)

where l0n ¼ 2; 4; . . .. Corresponding vibration modes are axisymmetric with m ¼ 0, as described in Section 3.2.
Variations of the natural frequency od with radius ratio b and density ratio r̄ are presented in Figs. 6 and 7,
respectively, for three values of surface tension parameter d, 1.0� 10�7, 1.0� 10�6, 1.0� 10�5 for a ¼ 0:01.
From these figures, we find that natural frequencies drastically increase with increase in the surface tension
parameter d.

3.3.2. Plate-drop coupled system

As already mentioned, since the present coupled dynamical system includes six system parameters, i.e. l, a,
b, r̄, d and ðx0; Z0Þ, it may be impossible to show all the cases in the combination of theses parameters. Then,
Fig. 5. Vibration modes of a cantilever plate with aspect ratio l.
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Fig. 6. Axisymmetric natural frequency of a semi-spherical drop od with drop radius ratio b; a ¼ 0:01; (a) d ¼ 1:0� 10�7;

(b) d ¼ 1:0� 10�6; (c) d ¼ 1:0� 10�5.
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we would like to concentrate here to demonstrate the coupling between one multi-degree of freedom system,
i.e. a cantilever plate, and added another multi-degree of freedom system, i.e. a liquid drop, and to compare
the results with the coupled system between one multi-degree of freedom system, i.e. a cantilever plate, and
single-degree of freedom system, i.e. ‘mass–spring’ system which has been previously studied [6]. Therefore, for
instance, we set here the aspect ratio of the plate l ¼ 1:0, position of the liquid drop ðx0; Z0Þ ¼ ð0:5; 0:5Þ.

Coupled natural frequency variations with density ratio r̄ are presented for three values of surface tension
parameter d in Fig. 8, when b ¼ 0:5; a ¼ 0:01. In the figure, although uncoupled natural frequencies of the
drop od and those of the plate op are presented in one-dotted curves or broken lines, they are almost under
coupled frequency curves which are presented with thick solid lines or curves. Horizontal lines are coupled
plate natural frequencies, which are independent with r̄, and parabolic curves are coupled drop natural
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Fig. 7. Axisymmetric natural frequency of a semi-spherical drop od with density ratio r̄; a ¼ 0:01; (a) d ¼ 1:0� 10�7;

(b) d ¼ 1:0� 10�6; (c) d ¼ 1:0� 10�5.
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frequencies. In the case when surface tension is moderately large with d ¼ 1:0� 10�5 shown in Fig. 8(a),
crossings between parabolic curves and horizontal lines can be seen just at the small value region of r̄ near the
ordinate. However, as shown in Fig. 7, in which uncoupled natural frequency variations of drop with r̄, with
decrease in d the coupled natural frequencies of the drop decrease and the number of cross-points with
horizontal lines gradually increases (Fig. 8(b) and (c)). In these crossing regions, the coupling may be
significant between drop motion and plate motion.

Variation of the lowest four coupled vibration modes are presented in Fig. 9, when d ¼ 1:0� 10�7 which
corresponds to Fig. 8(c), for r̄ ¼ 1; 5; 10. We see that the order of vibration modes changes with r̄, i.e. modes
in which liquid drop deformation is predominant and those in which plate motion is predominant.
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Finally, we shall compare the dynamical coupling characteristics of the present system with those of a plate
carrying a ‘spring–mass’ system [6]. In the previous study [6], we have analyzed coupled vibration
characteristics of a cantilever plate with attached ‘spring–mass’ system, i.e. the liquid drop was simply modeled
as a ‘spring–mass’ system.

Fig. 10(a) shows o� ame
diagram of the previous system [6] when ‘spring–mass’ system is attached on the

center of a cantilever plate ðx0; Z0Þ ¼ ð0:5; 0:5Þ, where ame
is the mass ratio ð� me=rHhLÞ, when stiffness

parameter ake � keL2=D ¼ 10, plate thickness ratio a � h=L ¼ 0:01, aspect ratio l ¼ 1:0. In the figure,
horizontal one-dotted lines are uncoupled natural frequencies of the plate, while a red broken curve
corresponds to that of ‘spring–mass’ system. We found that with increasing ame

, e.g. increasing mass me,
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Fig. 9. Coupled vibration modes with density ratio r̄, ðx0; Z0Þ ¼ ð0:5; 0:5Þ, b ¼ 0:5, a ¼ 0:01, d ¼ 1:0� 10�7.
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uncoupled natural frequency of ‘spring–mass’ system decreases, and that at the regions crossing points
between one-dotted lines and a red curve, there seems curve veering in coupled natural frequency curves
(shown in broken lines), and an exchange of vibration modes can be recognized.

While for the present case in which plate and a liquid drop are coupling, we choose, for example, reciprocal
of b, 1=b ¼ a=h, as a variable parameter in the abscissa, then we get similar o� 1=b diagram shown in
Fig. 10(b). In the figure, the lowest five coupled natural frequency curves are mainly presented together
with uncoupled natural frequencies of the plate and the drop with horizontal broken lines and
one-dotted curves, respectively. Other system parameters are taken as r̄ � rp=rd ¼ 0:5, d ¼ 1:0� 10�6,
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Fig. 10. Comparison of coupled natural frequency o variations, l ¼ 1:0; ðx0; Z0Þ ¼ ð0:5; 0:5Þ; (a) ‘spring–mass’ system, a ¼ 0:01 [6];

(b) present case, b ¼ 0:5; a ¼ 0:005; r̄ ¼ 0:5; d ¼ 1:0� 10�6.
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a � h=L ¼ 0:005, ðx0; Z0Þ ¼ ð0:5; 0:5Þ. First, we shall follow the lowest frequency curve along the
abscissa 1=b, it is nearly straight line until 1=b � 8 and corresponds to a coupled natural frequency in
which plate motion is predominant. At 1=b � 8 region, this line makes curve veering with coupled
drop frequency curve which rapidly downs from the upper-left side in the diagram, i.e. this line turns
down following the uncoupled drop frequency, and coupled drop frequency curve follows the horizontal
line. At this region, an exchange of vibration modes occurs, i.e. former downward frequency curve
tends to that for the coupled drop frequency, while the latter horizontal frequency line tends to that
for the coupled plate frequency, respectively. Further increase in 1=b, the horizontal line made the second
veering with coupled drop frequency curve of the 2nd mode. Similar curve veerings continue infinitely because
the added liquid drop has infinite number of freedom, i.e. infinite number of vibration modes. This is a
significant different characteristic of the present system from the previous case with coupled ‘spring–mass’
system [6].

The same is true for the higher vibration mode curves of a coupled plate frequency. Note that similar
diagram can be obtained by choosing 1=r̄ � rd=rp as a variable parameter in the abscissa.
4. Conclusions

From the energy point of view, by using Rayleigh– Ritz method, we have formulated the coupled free
vibration problems between a cantilever thin elastic plate and a hemi-spherical liquid drop attached on in zero-
gravity condition, which finally rendered into an eigenvalue problem. In some numerical calculations,
difference of the vibrational characteristics of the present coupled system in which plate and liquid drop are
coupling, i.e. one multi-degree of freedom system and another multi-degree of freedom system are coupling,
and those of the previous one [6] in which plate and a ‘spring–mass’ system are coupling, i.e. multi-degree of
freedom system and a single-degree of freedom system are coupling, have been demonstrated.
Appendix A. Integration shown in Eq. (63)

Integration involving clamped–free beam function X iðxÞ:

J00
ik �

Z 1

0

X iðxÞX kðxÞdx ¼ dik, (A.1)

J11
ik �

Z 1

0

qX iðxÞ
qx

qX kðxÞ
qx

dx ¼
ð3þ aiQiÞaiQi � ainimi ði ¼ kÞ;

4ðCik � CkiÞ=ða4i � a4kÞ ðiakÞ;

(
(A.2)

J20
ik �

Z 1

0

q2X iðxÞ

qx2
X kðxÞdx ¼

1� aiQi

� �
aiQi þ ainimi ði ¼ kÞ;

4aiQi � 4ðCik � CkiÞ=ða4i � a4kÞ ðiakÞ;

(
(A.3)

J22
ik �

Z 1

0

@2X iðxÞ

@x2
@2X kðxÞ

@x2
dx ¼ a4i dik, (A.4)

Cik ¼ a3i ak ai �Qk � ni � ak � mk

� �
, (A.5)

Qi ¼ coth ai þ cot ai, (A.6)

where dik is Kronecker’s delta.
Integration involving free–free beam function Y jðZÞ:

K00
jl �

Z 1

0

Y jðZÞY lðZÞdZ ¼ djl , (A.7)
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K11
jl �

Z 1

0

qY jðZÞ
qZ

qY lðZÞ
qZ

dZ ¼
bj 3ðQ̄j þ m̄j � n̄lÞ þ bjQ̄

2

j

n o
ðj ¼ lÞ;

4ðDjl �DljÞ=ðb
4
j � b4l Þ ðjalÞ;

8<
: (A.8)

K20
jl �

Z 1

0

q2Y jðZÞ
qZ2

Y lðZÞdZ ¼
bjðQ̄j þ m̄j � n̄j � bj � Q̄

2

j Þ ðj ¼ lÞ;

4bjðQ̄j þ n̄j � m̄jÞ � 4ðDjl �DljÞ=ðb
4
j � b4l Þ ðjalÞ;

8<
: (A.9)

K22
jl �

Z 1

0

@2Y jðZÞ
@Z2

@2Y lðZÞ
@Z2

dZ ¼ b4j djl , (A.10)

Djl ¼ b4j blðQ̄l þ m̄j � n̄lÞ, (A.11)

Q̄j ¼ coth bj þ cot bj. (A.12)
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